.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/sdk-integration-tutorial.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_sdk-integration-tutorial.py: SDK Integration Tutorial ======================== **Author:** `Jack Khuu `__ .. GENERATED FROM PYTHON SOURCE LINES 16-26 The `ExecuTorch SDK <../sdk-overview.html>`__ is a set of tools designed to provide users with the ability to profile, debug, and visualize ExecuTorch models. This tutorial will show a full end-to-end flow of how to utilize the SDK. Specifically, it will: 1. Generate the artifacts consumed by the SDK (`ETRecord <../sdk-etrecord>`__, `ETDump <../sdk-etdump.html>`__). 2. Create an Inspector class consuming these artifacts. 3. Utilize the Inspector class to analyze the model. .. GENERATED FROM PYTHON SOURCE LINES 28-47 Prerequisites ------------- To run this tutorial, you’ll need to install ExecuTorch. Set up a conda environment. To set up a conda environment in Google Colab:: !pip install -q condacolab import condacolab condacolab.install() !conda create --name executorch python=3.10 !conda install -c conda-forge flatbuffers Install ExecuTorch from source. If cloning is failing on Google Colab, make sure Colab -> Setting -> Github -> Access Private Repo is checked:: !git clone https://{github_username}:{token}@github.com/pytorch/executorch.git !cd executorch && bash ./install_requirements.sh .. GENERATED FROM PYTHON SOURCE LINES 49-91 Generate ETRecord (Optional) ---------------------------- The first step is to generate an ``ETRecord``. ``ETRecord`` contains model graphs and metadata for linking runtime results (such as profiling) to the eager model. This is generated via ``executorch.sdk.generate_etrecord``. ``executorch.sdk.generate_etrecord`` takes in an output file path (str), the edge dialect model (ExirExportedProgram), the ExecuTorch dialect model (ExecutorchProgram), and an optional dictionary of additional models In this tutorial, the mobilenet v2 example model is used to demonstrate:: # Imports import copy import torch from executorch import exir from executorch.examples.models.mobilenet_v2 import MV2Model from executorch.exir import ExecutorchProgram, ExirExportedProgram, ExportedProgram from executorch.sdk import generate_etrecord # Generate MV2 Model model: torch.nn.Module = MV2Model() aten_model: ExportedProgram = exir.capture( model.get_eager_model().eval(), model.get_example_inputs(), exir.CaptureConfig(), ) edge_model: ExirExportedProgram = aten_model.to_edge( exir.EdgeCompileConfig(_check_ir_validity=True) ) edge_copy: ExirExportedProgram = copy.deepcopy(edge_model) et_model: ExecutorchProgram = edge_model.to_executorch() # Generate ETRecord etrecord_path = "etrecord.bin" generate_etrecord(etrecord_path, edge_copy, et_model) .. GENERATED FROM PYTHON SOURCE LINES 93-104 Generate ETDump --------------- Next step is to generate an ``ETDump``. ``ETDump`` contains runtime results from executing the model. To generate, simply pass the ExecuTorch model to the ``executor_runner``:: buck2 run executorch/examples/portable/scripts:export -- -m mv2 buck2 run @mode/opt -c executorch.event_tracer_enabled=true executorch/sdk/runners:executor_runner -- --model_path mv2.pte TODO: Add Instructions for CMake, when landed .. GENERATED FROM PYTHON SOURCE LINES 106-124 Creating an Inspector --------------------- Final step is to create the ``Inspector`` by passing in the artifact paths. Inspector takes the runtime results from ``ETDump`` and correlates them to the operators of the Edge Dialect Graph. Note: An ``ETRecord`` is not required. If an ``ETRecord`` is not provided, the Inspector will show runtime results without operator correlation. To visualize all runtime events, call ``print_data_tabular``:: from executorch.sdk import Inspector etdump_path = "etdump.etdp" inspector = Inspector(etdump_path=etdump_path, etrecord_path=etrecord_path) inspector.print_data_tabular() .. GENERATED FROM PYTHON SOURCE LINES 126-139 Conclusion ---------- In this tutorial, we learned about the steps required to consume an ExecuTorch model with the ExecuTorch SDK. It also showed how to use the Inspector APIs to analyze the model run results. Links Mentioned ^^^^^^^^^^^^^^^ - `ExecuTorch SDK <../sdk-overview.html>`__ - `ETRecord <../sdk-etrecord>`__ - `ETDump <../sdk-etdump.html>`__ .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.000 seconds) .. _sphx_glr_download_tutorials_sdk-integration-tutorial.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: sdk-integration-tutorial.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: sdk-integration-tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_